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SPECTRAL MODELS FOR CASCADE PROCESSES IN HOMOGENEOUS TURBULENCE 

A. G. Bershadskii UDC 532.517.4 

There is a long history [i, 2] of simulating energy transport in homogeneous isotropic 
turbulence by means of spectral-density equations. Each model to some extent reflects the 
energy transport over the spectrum, but those spectral models usually do not reflect the 
cascade transport, i.e., sequential transport via nearest neighbors in the spectrum. That 
specific feature of turbulent transport is closely reflected by a reduction model due to 
Obukhov, Desnyanskii and Novikov, Gledzer, and so on [3-5]. It is of interest to demon- 
strate cascade transport directly on a spectral model. Here we propose such a model for 
homogeneous isotropic turbulence. 

The stationary Kolmogorov-Obukhov state (-5/3 law) is obtained in a scaie-invariant 
range, together with the nonstationary state having spectral density E(k, t) - t-2k -3 In 
the latter, there is energy transfer from the small-scale pulsations to the large-scale 
ones, which is usually ascribed to two-dimensional turbulence [6]. That state is observed 
also in lattice turbulence, which was used to simulate two-dimensional in the [7] experi- 
ments. In the dissipative range (in the short-wave limit), the model leads to a spectrum 
E(k) ~ exp - ak , which with logarithmic accuracy coincides with the Kreichnan-Kuz'min- 
Patashinskii asymptote [8]. 

I have calculated the damping for the total pulsation energy and the increase in the 
integral scale for the initial conditions E0(k) ~ k m exp -(k/k0) = The result is u 2 ~ t -n, 
L ~ tP, in which n = 2(1 + m)/(3 + m); p = 2/(3 + m); and L is the integral turbulence scale. 
For m = 1-4 corespondingly, those formulas give n = i, p = 1/2; n = 1.2, p = 0.4; n = 4/3, 
p = 1/3; n = 10/7, p = 2/7, i.e., values familiar from experiments and various theories 
[1, 9-14]. 

Hypotheses on the vortex interaction in turbulent flows are frequently formulated as 
spectral transport functions T(E; k, t) in the equation for such transport [i] 

OE(k, t)/at = --2vk2E(k, t) + T(E; k, t) (1) 

in which T(E; k, t) is a function of k and t and a functional of E(k, t). This incorporates 
inertial energy transport. The explicit form of that function-functional is unknown. We 
expand T(E; k, t) as a functional series in powers of E(k, t), and as the inertial effects 
are nonlinear, the series will be analogous not to a Taylor series but instead to an expan- 
sion near a branch point: 

eo oo 

T (E; k, t) = • S dkl" '"  dknG (k; kl . . . .  , k~) E 11~ (kl, t ) . . .  E ~/~ (k~, t). (2)  
n ~ 0  0 

Here m is a positive number (the algebraic order of the branch point), while G(k; k I ..... 
k n) describes the inertial effects from vortices having scales k I i .. kn-1 - , . , on vortices 
having scales k -l 
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If one specifies the order of the reduction or increase in the vortex scale in the 
cascade process ~, which is the one most likely to occur, then the maximally coarse cascade 
type of interaction can be represented by the approximation 

in which 6(x) is a Dirac delta function and p~, .... Pn take the values 0, i, or -I, while 

gn,p~, .... pn(k, t) are certain functions. In each elementary energy-redistribution act, 

there is self-action, so in each of the terms in Eq. (3), at least one of p~, "'', Pn 
should be zero. 

If E is small enough, one can retain only the leading power in Eq. (2), which is de- 
fined by comparison with the Euler model, namely on the basis that the equations of motion 
for the liquid are quadratically nonlinear. In the terms used in the present study, this 
represents homogeneity in the functional T(E) of order 3/2. We use that specification and 
substitute Eq. (3) into Eq. (2) to get in the leading approximation that 

Here Pl, P2, and P3 take the values 0, I, or -i, and in each term in the sum, at least one 
of Pl, P2, P3 should be zero. If we now impose the requirement of scale invariance on the 
coefficient functions gpzp2ps(k), then this with considerations of dimensions gives 

"~:~ "~ E 1/~ :J'k ~ E ~:~ (J~k) T=~ l__~ap, p:3 ~ ) . (a'~k)E ̀ /' (5) 

in which aplp2p~ are dimensionless constants. We substitute Eq. (5) into Eq. (I) to get 

As energy should be conserved in the absence of viscosity, i.e., 

0 

we get 

OE(k, t)/Ot = kSax [E'/~(k)E(ak) -- a-5/2E(k)E1/2(k/a) ] + k 3/'as [E(k)Ei/~k) -- a-5/2El/2(k)E(k/a) ] -- 2vk~E(k) (6) 

in which a I and a 2 are dimensionless constants. 

It is useful torecall the general principles from which the reduced Obukhov-Desnyan- 
skii-Novikov equations have been derived [4]: i) quadratic nonlinearity with respect to 
the velocity pattern; 2) scale invariance for the dimensionless coefficients; 3) inter- 
action occurring directly only by nearest neighbors in the spectrum; and 4) a quadratic 
integral in the nonviscous case. 

We have in fact used those principles in deriving Eq. (6). Of course, the spectral 
model is cruder than a reduction one, but it is convenient for operating directly with the 
spectral energy density. 

Firstly, as with the reduction model, we derive the stationary solution to Eq. (6) 
in the nonviscous approximation, i.e., the solution to 

k3/~al[EX/2(k)E(~k) -- ~-~/2E(k)E1/~(k/a) ] q- k'/~a~[E(k)E~/2(~k) -- ~-5/~E1/2(k)E(k/a) ] = O. 

In addition to the trivial solution E(k) = 0, there is a solution 

E(k) ~ k -5/', ( 7 ) 

i.e., the spectral energy density as a Kolmogorov-Obukhov law for the inertial interval. 
If we incorporate the viscosity in the stationary situation, i.e., use the equation 

ka/~al [Ell2(k)E(o~k) - -  o~-6/~E(lc)E'/~(k/a) ] -5 k 3/2a~ [E(k)E1/2(o~k) - -  ~-s/~E1/2(k)E(k/~) 1, (8) 
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one can determine the short-wave asymptote E(k). For two-fold reduction (union) with ~ = 
1/2 [4], that asymptote to Eq. (8) is 

E(k) ~ k exp (--ak) (9) 

in which a is a constant. That asymptote for k ~ ~ coincides with logarithmic accuracy 
with the standard Kreichnan-Kuz'min-Patashinskii [8] short-wave asymptote. To describe 
E(k) throughout the viscoinertial interval, including the inertial approximation (7) and 
the (9) short-wave asymptote, it is necessary to solve Eq. (8) without discarding the 
viscous term and without using the asymptotic approximation k § =. 

Interest attaches to the reversibility in the absence of viscosity, namely the reversi- 
bility of Eq. (6) when the viscous term is absent. When t is replaced by -t (time reversal), 
the vortex break-up must be replaced by union. In the reversibility analysis, the replace- 
ment of t by -t must be accompanied by the replacement of a by ~-I Then Eq. (6) without 
the viscous term is seen to be invariant under those transformations if 

al = a2 = ao~W2. ( i 0 )  

Then this spectral model is reversible in the nonviscous case if Eq. (i0) is obeyed. 

In the scale-invariant range, where E is a power function of k, Eq. (6) in the non- 
viscous approximation has the nonstationary solution 

E(k, t) = At-2k, 

i f  a o < 0 f o r  a < 1 o r  a o > 0 for a > I. Then 

A = 4a/[a02(l + ~3/2 _ =~ _ =vD2 ]. 

(11) 

A solution of Eq~ (ii) type is stable under small perturbations of 6(t)k -3+s type, in which 
5(0) and s are sufficiently small numbers. 

In a reduction model, the E ~ k -s spectrum is related to a nonviscous entrophy integral 
[3] (when the nonviscous energy invariant is violated). The -3 spectrum is possible also 
in a model with energy conservation but is substantially nonstationary: E ~ t -2 An Eq. 
(ii) spectrum has been discussed in relation to two-dimensional turbulence (see a special 
collection on this [6]), and has also been observed as E ~ t -2 and E ~ k -a [7]. In the [7] 
experiments, the lattice flow of a highly conducting liquid (mercury) was used in a trans- 
verse magnetic field (B = 0.68 T), which simulates two-dimensional turbulence in a plane 
normal to the field induction vector [15]. 

The direction of the energy redistribution over the spectrum is of interest [3, 16, 
17]. We integrate both parts of Eq. (6) without the viscosity with respect to k' from 0 
to k: 

k {!dk,k,8/2[aS/2Eg2(k,)E(ak,) E(k,)E1/2(k,)] + a ~ E (k') dk'iat = a o 
o ( 1 2 )  

+ i dk'k'3'~[aS/2E(k')E~/2(k')--E~/2(k')E(k'la)]}" 
o 

From gq. (12) with a < i we get 

h h 

0 ~ E (k') dk' lat = - -  a o S dk'k'3/2 [E1/~ (k'/a) E (k') + E ~/~ (k') E (k ' /a ) ] .  (13) 
0 ~k 

h 

As E _> 0,  Eq. ( 1 3 )  g i v e s  u s  t h a t  f o r  a 0 > 0  , S E ( k ' ) d k '  d e c r e a s e s  m o n o t o n i c a l l y  o v e r  t i m e  i n  
0 

t h e  n o n v i s c o u s  a p p r o x i m a t i o n s  f o r  a 0 < 0 ,  w h i l e  i t  i n c r e a s e s  m o n o t o n i c a l l y  w i t h  t f o r  a 0 < 
0 .  F o r  a > 1 

h ~k 

o S E (k') dk'JOt = a0 dk'k [E  1/3 E (k3 + E 1/2 (k') E 
0 k 

and  t h e  c o n c l u s i o n s  a r e  t h e  o p p o s i t e  o f  t h o s e  f o r  t h e  p r e v i o u s  s i t u a t i o n  (c~ < 1 ) .  
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As t h e  t o t a l  e n e r g y  [ i s  c o n s e r v e d  in  t h e  n o n v i s c o u s  w i t h  E X 

0 0 

(k')dk' increasing monotonically in time, there is energy transfer from the small-scale 
h 

pulsations to the large-scale ones, and vice versa, when I E(k)dk decreases monotonically. 
0 

In the situation where Eq. (ii) applies, one should have the relation a < 1 =~a 0 < 0, 
> I ~a 0 > 0, so in any case (for ~ < i or for = > i) the energy is transferred from the 

small-scale pulsations to the large-scale ones (compare the analogous effect in the theory 
of two-dimensional turbulence [16, 17]). 

If we abandon the requirement that Eq. (4) provides energy conservation in the nonvis- 
cous case, one can use it to describe the damping for the total pulsation energy, i.e., 
Eq. (4) is considered as applicable only to the energy-bearing range and is of pure sink 
type. Then in that range 

We consider an initial condition for E(k, t): 

Eo(k ) = E(k, O) = k TM exp - -  (k/k~ ~, (14)  

as  u s u a l l y  employed in  n u m e r i c a l  models  f o r  homogeneous t u r b u l e n c e .  We t a k e  k 0 as  such  
t h a t  t h e  e x p o n e n t i a l  f a c t o r  i n  Eq. (14)  i s  a p p r e c i a b l e  o n l y  o u t s i d e  t h e  e n e r g y - b e a r i n g  wave- 
number r a n g e ,  which means t h a t  t h e  i n i t i a l  c o n d i t i o n  in  t h a t  r a n g e  i s  a p p r o x i m a t e l y  E0(k)  : 
k m. We make the substitution E(k, t) = E'(k, t)k TM, and then the initial condition for E' • 
(k, t) in the energy-bearing range will be E0'(k) = i, and the equation is 

As E 0 ' ( k )  = 1 ( i s  i n d e p e n d e n t  o f  k in  t h e  e n e r g y - b e a r i n g  i n t e r v a l ) ,  we i n t r o d u c e  t h e  s e l f -  
similar variable 

= tk (3+2m)1~. (15) 

It is clear that E'(k, t) = g'(~) in the energy-bearing interval, and the total pulsation 

energy is ~2 = (3/2) i E(k)dk. 

0 

a p p r o x i m a t e l y  t h a t  

As that interval contains virtually all the energy, we have 

co 

0 

(16)  

We replace k by �9 in the integral to get from Eq. (16) that 

N t - n ,  n = 2 ( l  + m ) / C 3 + m ) .  (17)  

We calculate also the integral turbulence scale (longitudinal [I]): 

an [ E k-* d E (k) dk, 
0 

We c o n v e r t  t o  t h e  Eq. (15)  �9 t o  g e t  

L N I P ,  p = 2 / ( 3 - F r o ) .  (18)  

We g e t  n = 1 and p = 1/2 f r o m E q s .  (17)  and (18)  f o r  m = 1. Those  v a l u e s  o f  n and 
p a r e  f a m i l i a r  f rom t h e  t h e o r y  and f rom e x p e r i m e n t s  on hyd rodynamic  a r r a y s  [ 1 ] .  

A l s o ,  n = 1 .2  and p = 0 .4  f o r  m = 2, which  was f i r s t  o b s e r v e d  in  U b e r o i ' s  l a t t i c e  
e x p e r i m e n t  [ 1 ] ,  w h i l e  we may n o t e  [12] amongst  r e c e n t  ones .  I n  [ 1 4 ] ,  s i m u l a t i o n  o f  homo- 
geneous  t u r b u l e n c e  w i t h  Eq. (14)  as  i n i t i a l  c o n d i t i o n  and m = 2 gave  n = 1 . 2 .  Amongst t h e  
t h e o r e t i c a l  o r  s e m i e m p i r i c a l  s t u d i e s  in  which  n = 1 .2  and p = 0 . 4 ,  we may n o t e  [ 1 0 ] .  

A l s o ,  n = 4 /3  and p = 1/3 f o r  m = 3. I have  n o t  found  any t h e o r e t i c a l  d e r i v a t i o n  o f  
t h o s e  v a l u e s  in  t h e  l i t e r a t u r e .  Of t h e  e x p e r i m e n t a l  p a p e r s ,  we may n o t e  [ 1 1 ] .  
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Finally, n = 10/7 and p = 2/7 for m = 4, which were first derived by Kolomogorov from 
theory with the use of a Loitsyanskii invariant [i, 18] (this is also related to the value 
m = 4 [9]), which was observed by experiment in [19]. 

I am indebted to A. S. Ginevskii and Yu. P. Sosedko for a discussion of the experiment. 
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